网站首页/网络技术列表/内容

海底电缆的结构与进展

网络技术2022-12-25阅读
网络技术是从1990年代中期发展起来的新技术,它把互联网上分散的资源融为有机整体,实现资源的全面共享和有机协作,使人们能够透明地使用资源的整体能力并按需获取信息。资源包括高性能计算机、存储资源、数据资源、信息资源、知识资源、专家资源、大型数据库、网络、传感器等。 当前的互联网只限于信息共享,网络则被认为是互联网发展的第三阶段。

1988年,在美国与英国、法国之间敷设了越洋的海底光缆(TAT-8)系统,全长6700公里。 

这条光缆含有3对光纤,每对的传输速率为280Mb/s,中继站距离为67公里。这是第一条跨越大西洋的通信海底光缆,标志着海底光缆时代的到来。1989年,跨越太平洋的海底光缆(全长13200公里)也建设成功,从此,海底光缆就在跨越海洋的洲际海缆领域取代了同轴电缆,远洋洲际间不再敷设海底电缆。

光纤的传输容量大,中继站间的距离长,适用于海底长距离的通信。用于海底光缆的光纤比陆地光缆所用的光纤有更高的要求;要求低损耗、高强度、制造长度长,光缆的中继距离长,一般都在50公里以上,在光纤的传输性能方面要求在25年以内不会变化。在海底光缆的结构方面:要求能经受强大的压力和拉力,特别是深海光缆(敷设在水深1000米以上海底的光缆),在敷设和维修作业中除了光缆本身的重量外,还要加上海浪加到光缆上的动态应力,在如此大的负荷条件下,光缆的应变要限制在0.7~0.8%之内;海底光缆的结构要求坚固、材料轻,但不能用轻金属铝,因为铝和海水会发生电化学及应而产生氢气,氢分子会扩散到光纤的玻璃材料中,使光纤的损耗变大。因此海底光缆既要防止内部产生氢气,同时还要防止氢气从外部渗入光缆。为此,在90年代初期,研制开发出一种涂碳或涂钛层的光纤,能阻止氢的渗透和防止化学腐蚀。光纤接头也要求是高强度的,要求接续保持原有光纤的强度和原有光纤的表面不受损伤。

按照上述要求和特点,海底光缆的基本结构是将经过一次或两次涂层处理后的光纤螺旋地绕包在中心,加强构件(用钢丝制成)的周围。几种典型的深海光缆的结构:深海光缆,光纤设在螺旋形的U形槽塑料骨架中,槽内填满油膏或弹性塑料体形成纤芯。纤芯周围用高强度的钢丝绕包,在绕包过程中要把所有缝隙都用防水材料填满,再在钢丝周围绕包一层铜带并焊接搭缝,使钢丝和铜管形成一个抗压和抗拉的联合体,这个铜管还是传送远供电流的导体。在钢丝和铜管的外面还要再加一层聚乙烯护套。这样严密多层的结构是为了保护光纤、防止断裂以及防止海水的侵入,同时也是为了在敷设和回收修理时可以承受巨大的张力和压力。

即使是如此严密的防护,在80年代末还是发现过深海光缆的聚乙烯绝缘体被鲨鱼咬坏造成供电故障的实例。海缆系统的远程供电十分重要,海底电缆沿线的中继器,要靠登陆局远程供电工作。海底光缆用的数字中继器功能多,比海底电缆的模拟中继器的用电量要大好几倍,供电要求有很高的可靠性,不能中断。因此在有鲨鱼出没的地区,在海底光缆的外面还要加上钢带绕包两层和再加一层聚乙烯外护套。

进入90年代,海底光缆已经和卫星通信成为当代洲际通信的主要手段。我国自1989年开始到1998年底已经先后参与了18条国际海底光缆的建设与投资。其中第一个在中国登陆的国际海底光缆系统是1993年12月建成的中国——日本(C-J)海底光缆系统。1996年2月中韩海底光缆建成开通,分别在我国青岛和韩国泰安登陆、全长549公里;1997年11月,我国参与建设的球海底光缆系统(FLAG)建成并投入运营,这是第一条在我国登陆的洲际光缆系统,分别在英国、埃及、印度、泰国、日本等12个国家和地区登陆,全长27000多公里,其中中国段为622公里;由中国电信和新加坡等地的电信公司共同发起的亚欧海底光缆系统,延伸段正在建设,该系统连接亚洲、欧洲和大洋洲,在33个国家和地区登陆,全长达38000公里,是世界上最长的海底光缆,采用先进的8波长波分复用技术,主干路由的设计容量高达40Gb/s,在我国上海、汕头两地登陆,1999年底建成开通。

海底光缆承担的洲际通信业务量逐年上升,已经超过了卫星通信的业务量,成为现代洲际通信的主力。

【相关文章】

责任编辑: 雪花(TEL:(010)68476636-8008)

网络的神奇作用吸引着越来越多的用户加入其中,正因如此,网络的承受能力也面临着越来越严峻的考验―从硬件上、软件上、所用标准上......,各项技术都需要适时应势,对应发展,这正是网络迅速走向进步的催化剂。

标签:电缆
相关阅读