网站首页/硬件软件列表/内容

SPSS重复测量方差区分的检验结果解读

硬件软件2024-05-04阅读
SPSS由IBM公司出品,它提供了包括描述性统计、推断性统计、因子分析、聚类分析、回归分析等多种统计分析功能,并包括文本分析、机器学习算法、数据分析模型等。SPSS的界面友好,易于操作,能够快速从数据中提取有用的洞察和分析,广泛应用于教育、心理、医学、市场、人口、保险等多个研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。

本文将重点解读重复测量方差的分析结果。重复测量分析往往需要查看球形假设的检验结果。根据数据满足或不满足球形假设的情况,需要实施不同的检验方法。接下来,我们一起来解读下重复测量方差分析结果。

 示例数据

图1:示例数据

一、描述统计

本文分析的是1-3月份重复测量的销售量数据。如图2所示,从数据趋势来看,1-3月份的销售量呈现增长的趋势。

描述统计

图2:描述统计

二、估算边际平均值

而从估算边际平均值的轮廓图,如图3所示,也能看到随着月份的推进,销售量在增长,而且1-2月份的增长较多,而2-3月份则增长较少。

估算边际平均值

图3:估算边际平均值

三、球形假设检验

为了进一步检验1-3月份的销售量是否有显著差异,我们需进一步查看重复测量的方差检验结果。

在这之前,需先查看数据是否服从球形假设。如图4所示,在Mauchly球形度检验结果中(原假设为重复测量的因变量数据服从方差协方差矩阵相等),可以看到,其显著性数值为0.191>0.05,不能拒绝原假设,也就是说,数据服从球形假设。

满足球形假设 图4:满足球形假设

在因变量数据满足球形假设的前提下,如图5所示,查看“假设球形度”的显著性数值。其显著性数值为0.00<0.05,拒绝原假设,也就是说1-3月份重复测量的销售量数据存在着显著性差异。

如果数据不服从球形假设时,就需要查看格林豪斯-盖斯勒或辛-费德特的显著性数值。

球形假设显著性

图5:球形假设显著性

四、成对比较

从方差分析中,我们知道1-3月份的销售量数据存在显著差异。那么,具体是哪些月份之间存在显著差异呢?关于这一问题,可以查看成对比较结果。

如图6所示,可以看到1月份与2月份、3月份之间存在着显著性差异(显著性值均小于0.05),而2月份与3月份之间无显著性差异(显著性值均大于0.05)。

成对比较

图6:成对比较

三、小结

综上所述,通过使用IBM SPSS Statistics的重复测量方差分析,可检验多次测量的因变量测量值是否存在差异,适用于检验某项方案、措施等是否存在着持续性的效益等,但需注意的是,观测值之间需存在一定相关关系。


世界上许多有影响的报刊杂志就SPSS给予了高度的评价。
相关阅读